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| Introduction

The Transforming Growth Factor-B (TGF-B) signaling pathway has been shown to be critical to the
processes of embryological development of 'organisms as diverse as fruit flies and humans. This pathway
can be detected at very early stages of development and acts to coordinate the complex mechanisms of
cellular differentiation that will ultimately result in a mature organisin. The TGF-p pathway continues its
regulation of cellular events during the devélopmental stages and throughout the lifespan of more
complex organisms. The power that this éignaling cascade has over cellular fate is necessary for its
ability to regulate development and differentiatidg, however when regulatory controls are lost, the res‘ult'
is usually uncontrolled growth and proliferation. Therefore, it is not surprising that mutations within the
TGF-B pathway have been implicpéed in a wide range of clinically observed oncogenic lesions including
Breast cancer.

The TGF-P superfamily of ligands includes the bone morphogenetic proteins (BMPs), activin and
TGF-B. The signaling pathwa.y. is a relatively simple cascade that consists of the I*igand, the type I and
type II receptors, and the cytoplz‘ismic signal transducers called smads (for a more detailed review of this
bathway refer to references 54-56) . The type I and type II recéptors are serine/threonine kinases that,
upon ligand binding, form a hetcrotefcfameric corhplex in which the constituﬁveiy active type II receptor

| phosphorylafes the type I recéptor in the GS doméin resulting in catalytic activation. The activated type I
receptor then transiently associates with and phosphorylates the receptor activated smads (R-smads) on
their two most C-terminal serine residues. The smad proteins consist of two highly conserved mad
homology domains, termed MH] and MH2, connected by a relatively divergent linker region. The MH1
domain is involved in DNA binding, while thé MH2 domain is impox'fant for protein/protein interactions.
The mad homology domains are capablé of interacting with each other in an inhibitory fashion that is
alleviated by type I receptor phosphorylation. This phosphorylation results in association with the co-

smad, translocation to the nucleus, and regulation of gene transcription usually through association with




coactivators, corepressors, or other transcription factors such as AP-1 or the Wnt regulated Lef/Tcf
family members.

The casein kinase I (CKI) family has seven identified isoforms (a, B, v1l, v2, ¥3, §, and €) that
possess a highly homologous N-terminal kinase domain and a highly divergent C-terminal tail, and have
a predicted molecular weight of approximately 40-50kDa (for a detailed view of the CKI family refer to
reference 1). These kinases have been implicated in a wide range of cellular functions including,
vesicular trafficking, DNA damage repair, cell cycle progression, and cytokinesis. CKI was one of fhe
first serine/threonine kinases ever purified and ﬁé;lce extensive research has been done on characterizing
its activity, substrate specificity, function, tissue distribution, subcellular localization and regulation. The
results of this research have legg;l to the characterization of the general consenéus phosphorylation
sequence S/T/Y(P)X1-3S/T (40,41). This sequence suggests that the action of other kifhases is probably
required for CKI activity, and thuls CKI has bgen classified as a phosphate-directed kiﬁase. Since it is not
clear how these congtitutively active kinases are regﬁlated within a cell, it appears‘that this may be one
major mechanism by which co‘ntrol is achiéved, with subc?ellular localizétion being a second likely

mechanism. The CKI family also possesses two other potentially interesting physical features, the first

being a kinesin homology domain (KHD) and the second being a near consensus SV40 T antigen nuclear

lbgalization sequence (NLS) (1). The significance of these sequénces remains to be determined however,
a recent paper has demonstrated that the NLS sequence is definitely functional and necessary for nuclear
translocation of CKla (27). The majority of the research done on the CKI family has focused primaril}.l.
on characterizing their function and identifying potential substrates. However, over the last several years
there has been a revolution in the CKI field and this obscure family of kinases has moved into a position
of intense research in the field of signal transduction. The last several years have seen the publication of
numerous papers that demonstrate a significant role for CKle and CKI3 in the circadian rhythms of

mammals (17-19), the cytoplasmic seqﬁestration of NFAT and the regulation of a Gq/ll-coupled
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- receptor by CKlo. (25,26), the regulation of the B-PDGFR by CKIy2 (23), and the positive regulation of
the Wnt signaling pathway by CKle (9-12). These findings combined with our own preliminary results
has resulted in our undertaking the task of determining if the CKI family plays a functional role in the
TGF-B signaling pathway and what the significance of thié role may mean with respect to the

development and progression of breast cancer.




Body/Results

Task 1:
Determine if CKI family members can physically interact with components of
the TGFP pathway and whether these interactions are ligand dependent.

Several years ago a yeast two-hybrid screen was performed in the lab using smad.3 aé bait.
This screen generated several hundred clones, each representing a potential smad3 interactor and
TGF-B pathway effector. The results of this‘ screen have since acted as a launching pad for further
investigation into identifying these geﬁes and elucidating their potential role within the TGF-B
pathway. One gene that has been identified on at least three separate occasions is Casein Kinase
Iy2 (CKIgZ). The identificatiorf of this kinase as a potential interactor was intelfesting in and of
itself, but with the publication of a study implicating CKIe (a closely related ho}rflolog of CKIyZ)
in the positive regulation of the Wnt patilway (9-12), our in,t'erest increased dramatically. We
were curious to see if CKle couid also interact with smads and play arole in regulating the TGF-
B pathway.

Full length CKIe interacts strongly with Smads in vitro, while full length CKla/6/y2
family members interact weakly.

CKI family members were radiolabled in vitro with Methionine-S* and GST pulldown assays
were performed using purifed GST fusions of the receptor activated smad proteins. As shown in
Figure 1, CKle is able to bi‘nd‘ strongly to smad1/2/3, but weakly to smad5. Furthermore, using
GST constructs that are fused to eitl;er thé MH2 domain (S3C) or the MH1 domain and linker
region (S3NL) of smad3, it appears that CKIe has a much higher affinity for the MH2 domaiﬁ
(Fig. 1). This point may prove important as a functional role for CKle in the TGF-B pathway is

developed. In addition, I have looked for in vitro interaction with smad4, the co-smad, and found
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that CKIe also can interact strongly with this smad (data not shown). In addition, I have repeatéd
these GST pulldown assays for each CKI family member that has been shown to be expressed in
the TGF-B responsive cell lines that we use. I have found that full length CKIo/8 family members
bind weakly to GST purified smads in comparison to CKle binding, while the full length CKIy2
family member had almost undetectable binding. This last finding was especially surprising,
since this was the isoform that was originally identified in the yeast two-hybrid screen in which
smad3 was used as bait. Further analysis of the CKIy2 sequences that were isolated in the yeast
two-hybrid assay showed' that none of them contained the N-terminal ‘portion of the protein.
Therefore, I fused CKIy2 Iackjg'g theN-terminus to GST and performed a GST pulldown assay
using ;c,mads radiolabled with 1;/.Iethionine-S35 . As shown in Figure 2, the elimination of the N-
terminus of CKIy2 resulted in strong binding to smadl, detectable binding to smads3/4, but no"
detectable binding to smad2. This data suggests that the um'ciue extension p;eceding the kinase
domain that is found at the N-terminus of CKIy2 might somehow inhibit in vitro binding with
smads.
Full length CKle can interact with the TGF-$ Type I and Type II Receptors in vitro.
It waé previouS.Iy observed that iIﬁmunoprecipitated TGF-B type vII receptors possessed, what
was believed at the time to be, an intrinsic casein kinase I \activity (39). Close examination of th¢ ’
data shows a coimmunoprecipitated protein of about 40-45kDa, the approximate size of CKle.
This observation lead me to hypothesize that CKIe may be cépable of interacting with the TGF-B
type I and type II receptors. Therefore, CKIs was again radiolabled in vitro with Methionine-S*

and GST pulldown assays were perfdrmed with purifed GST fusions of the cytoplasmic domains




~ of the TGF-B type I and type II receptors, as well as, a GST fusion of a BMP type I receptor. As

shown in Figure 3, CKle is capable of binding to both type I and type II receptors.
CKlIz¢ can interact with Smads and TGF-B Type I and Type II Receptors in vivo.
Since CKle can bind to smads and receptors in vitrb, we next decided'to look Whether this
interaction also occurred in living cells. HaCaT-CKle3 cells a spontaneously immortalized
human keratinocyte cell line that is responsive to TGF-B ligand and stably transfected with CKle,
were used for these co-immunoprecipitatioh assays. Cell lysates were incubated with one of the
following; anti-TGF-B type I, anti-TGF-B type II, anti-smad 2/3 or anti-smad 1/5, and then
blotted for CKle. As shown i{l;Figure 4, CKle can interact with receptors and smads in vivo.
Furthermore, it appears that the strongest interaction occurs with the receptors‘,?while a weaker
interaction is seen with the receptor activated smads. We have also done a co-
immunoprecipitation assay w‘ith anti-smad4 and found that CKle and smad:‘r, the co-smad, can
also interact in vivo. Although parental HaCaT cells express CKle endogenously and association
with smads and receptors can be obsefved when co-IP expe:riments are done using the wild type
cells, we decided to use the HaCaT-CKIe3 cells fgr these studies so that the interactions would
be easier to detect and monitor. This point becomes most important when the co-IP experiment is
done with the smad antibodies, due to the relatively weak signal observed with endogenous
proteins alone (Figure 3).

TGF-P treatment transiently disrupts the CKIe/Smad interaction, but does not effect
the CKle/Receptor interaction.

The in vivo interaction with components of the TGF-$ pathway provides some evidence that

there may be a functional role played by CKle. The next question we wanted to address was




whether treatment of the stably transfected HaCaT cells with TGF-B ligand might affect these
interactions. Cells were treated over a four hour period with TGF-f ligand, the cells were lysed,
lysates were incubated with anti-smad2/3, and blots were performed for CKle. As shown in
Figure 5, the interaction between CKle and Smad2/3 is ‘transie_ntly disrupted with TGF-f
treatment. However when the same experiment was performed for the TGF-B type II receptor,
there was no observable disruption of CKle binding (Figure 6). I have also performed this
experiment probing for the TGF-B type I fegeptor and again found that there is no observable

disruption of CKle binding (data not shown).

‘Task 2:

Examine whether CKI f;mily members can regulate TGF-f mediated gene

transcription.

In order to determine if CKle was capable of playing a functional role in tile TGF-B pathway,
we decided to use the classic;:ll transcription reporter assay as a measure of function. There are
several reporter constructs that are widely used to ‘monitoi' TGF-p regulated transcription. We
tried two different constructs, the first is the 3TP-Lux construct that consists of a region of the
PAI-1 promoter that is known to contain smad binding elements as well as. AP-1 binding
elements (47). The second is a cancatemerized smad binding element (SBE) fused to the-
luciferase gene, with no AP-1 sites present. HepGZ cells, a human hepatocellular carciﬁoma cell
line, are responsive to TGF-B and easily transfectable. Using the SBE reporter construct, I found
that adding just CKle alone resulfed in reduced basal transcriptional activity, and when TGF-f
was added the transcriptional activity was éctqally enhanced. This resulted in a dramatic increase

in fold TGF-B induction with the addition of CKle compared to control. Furthermore, a kinase
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dead construct of CKIe (CKIe-KD) was also capable of reducing basal transcriptional activity,
but failed to enhance activity in response to TGF-$ (Figure 7 and data not shown). This data
suggests that the reduction in basal activity only requires the presence of the protein and not the
kinase activity, while enhancement of TGF- ligand treatment requires the protein and the kinase
activity. In addition, using the 3TP-Lux reporter, HepG2 cells show a significant increase in
transcriptional activity iﬁ response to TGF-B, however when smad3 and CKIe are added together
the response to TGF-B is increased by app'ro,ximatély twicé that seen with TGF-8 aloner(Figure
8). Furthermore, when Smad2 and CKlg were added together there was no enhancement over that
seen for smad2 alone (Figure_g). The enhancerhent of smad3 transcriptional activity was also

observed using the SBE-Lux reporter (Figure 9). These results imply that the DNA binding

ability of smad3 is important for the ability of CKle to enhance its transcriptional activity.

i

Task 3: ; : ,
Determine if CKI family members are necessary te maintain normal TGF-p

pathway function.
There are no reportable research accomplishments for this task for the time period addressed
in this report.

Task 4: ‘
Determine if CKI family members can phosphorylate components of the

TGF-p pathway, identify potential phosphorylation sites, and evaluate the
functional significance of these sites.

Since CKlIe is a serine/threonine kinase (same as the TGF-B type I and type II receptors), we
wanted to see if CKlIe could phosphorylate purified smads in vitro. We were also curious to see if

CKIe might be able to phosphorylate either of the receptors, since we have seen that they can
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interact in vitro and in vivo. As shown in Figure 10, CKIe phosphorylates the TGF- acﬁvated
smads (smads2/3) and the BMP activated smads (smadsl/5) to a lesser extent, but it does not
phosphorylate the co-smad (smad4). In addition, we observed that CKle appears to
phosphorylate the MH1 domain and the linker region of smad3, but not the MH2 domain (the
region phosphorylated by the type II receptor). Furthermore, CKle can phosphorylate the
cytoplasmic region of the type II receptor, but does not appear to phosphorylate the type I

receptor (this observation remains to be resolved because purification of a reasonable amount of

the kinase dead TGF-p type I receptor has proven challenging). -
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Key Research Accomplishments

Shown that Casein Kinase Ie (CKIg) is capable of interacting with multiple components
of the TGF-P signaling pathway both in vitro and in vivo.

Shown that CKlIe binding to the receptor activated Smads in vivo is transiehtly disrupted
by TGF-f ligand stimulation. :

Shown that CKle blndlng to the TGF-B type I and type II receptors is independent of
TGF- ligand stimulation.

Shown that CKIe acts to regulate TGF-B mediated transcription, as well as enhance the
transcriptional activity Smad3. '

Shown that CKlIe can phosphorylate the receptor activated smads and the cytoplasmic

domain the TGF-p type II receptor in vitro.

Mapped the CKle phospfloryaltlon sites of Smad3 to the MH1 domain and the linker
region.
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Reportable Outcomes

Abstracts:

Casein Kinase Ic Regulates the TGF-$ Pathway and Provides a Link for TGF- Activation
of the Wnt Pathway. David S. Waddell, Nicole T. Liberati, Jeremy N. Rich, and Xiao-Fan
Wang. Duke University Medical Center, Department of Pharmacology and Cancer Biology,
Durham, NC 27710. Submitted for the April 2002 AACR Meeting. '

Casein Kinase Ic Plays a Functional Role in the Transforming Growth Factor-§ Signaling
Pathway. David S. Waddell, Nicole T. Liberati, Ph.D., and Xiao-Fan Wang, Ph.D. Duke
University Medical Center, Department of Pharmacology and Cancer Biology, Durham, NC
27710. Submitted for the September 2002 Era of Hope Meeting.

Degrees:

Mrs. Xuefang Bai, the original récipient of this award, was funded for one year prior to
graduating with a Master of Sciénce Degree in Molecular Cancer Biology.

Cell Lines and Serum:

HaCat cells, a spontaneously immortalized cell line that is responsive to TGF-B, has been
stabling transfected with CKIe and CKIy2, as well as the kinase dead versions of these two

proteins. '

A polyclonal antibody has been raised in rabbits to the C-terminus of CKIy2.
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Conclusions

The TGF-P signaling pathway has been shown to be involved in a wide range of biological
processes, including development, differentiation and ‘oncogenesis. The regulation of this
pathway, and its role in cancer, continues to be an area of intense investigation. Recently Casein -
Kinase Ie (CKIg) has been shown to positively cc;ntrol the Wnt pathway, another major pathway
involved in the development of numerous types of cancers. In this study, we are engaged in an
ongoing investigated to determine the regulétory role of CKle in the TGF-B pathway. This
pathwéy consists of the ligand, the Type I and the Type II serine/threonine receptor kinases,
which cbmplex upon ligand ‘pinding, to activate a family of intracellular signal transducing
proteins calied Smads. We have found that CKle binds to all Smads and-‘fihe cytoplasmic
domains of the Type I and‘Typf‘: 11 receptors both in vitro and in vivo. The interaction of CKle
with the Type I and Type II receptors is independent of TGF-p ligand stimulation. However, the
CKle/Smad interaction is transiently disrupted by TGF-B stimulation, with complete
disassociation by 2 hours. Since CKle is also a serine/fhréorﬁne kinase, we examined in vitro
phosphorylatibn of Smads and receptors by CKIe.bnly the recept;qr—activated Smads (Smads 1,
2, 3, and 5) and the Type II Receptor are phosphorylated by CKlIe. Furthermore, in the absence of
TGF-B, CKle dramatically reduces basal transcriptional reporter activity, but in the presence of
ligand CKle increases TGF-B mediated transcription. Finally, the enhancement of TGF-B
mediated transcripfion is most likely the result of the ability of CKle to dramatically enhance

Smad3 transcriptional activity. The potential mechanism by which the basal transcriptional

activity is reduced remains unknown, but it is a major aim that we hope to determine with this
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researéh. The fact that CKIe appears to play a role in controlling the basal activity of the TGF-B
pathway, implies that this family of proteins may act as an important negative regulator of this
pathway in the absence of ligand. The importange of thivs observation remains to be determined,
however if CKIe does prove to be a necessary negative regulator, then this would be the first
evidence that the CKI family may play some role in the development and/or progression of
cancers in which there is a loss of regulation of the TGF-B pathway. These results taken together
demonstrafe that CKlIe interacts with several components of the TGF-B pathway and plays a
significant regulatory role in the presence and absence of ligand. These observations provide

intriguing insight into the regulation of a major Signal transduction pathway involved in the
4

development and progression of many different types of cancers, including breast cancer.

Importance and Implications

i

The ongoing advances in' the understanding and treatment of cancer depend almost
unconditionally on the knowiedge gained through basic scientiﬁc- research conducted everyday
by countless labs around the world. The increased under;fanding of how signal transduction
pathways work and how mutations in these pathvx;ays can ultimately result in uncontrolled ce‘llr
growth is invaluable to our ability to identify targets for the development of new drugs and
improved treatments. The research described above is merely another cog in the wheel of our
understanding of the TGF-B signaling pathway. Taken independently this research may seem
trivial and insignificant, but when combined with the vast knowledge thaf we have alr'éady
accumulated it becomes much more importani as we try to determine how this signaling pathway

functions and where mutations within this pathway may prove to be the most damaging with

16




respect to regulation. Whether the casein kinase I family ultimately proves to be a major player
in the regulation of the TGF-B pathway, or just another minor effector remains to be determined.
Regardless of the importance of the casein kinase I family within the framework of thé TGF-B
signaling pathway, it is becoming more and more apparent that this family of serine/threonine
kinases has some significant role to play in the maintenance and regulation of many important
and potentially oncogenic signal transduction pathways. This observation alone, irrespective of
the role CKI may have in the TGF-B pathway, may someday make the CKI family members an

important target in treating patients with cancer.
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Appendices

Figure Legends

Figure 1: CKle interacts with receptor activated smads in vitro. Radiolabled CKIe was incubated with
GST purifed smads bound to glutathione conjugated to sepharose beads, washed with binding buffer,
run on a SDS-PAGE gel, dried and exposed to film to visualize.

Figure 2: CKIy2-AN interacts with smads in vitro. Radiolabled smad proteins were incubated with
GST-purifed CKIy2-AN bound to glutathione conjugated sepharose beads, washed with binding
buffer, run on a SDS-PAGE gel, dried and exposed to film to visualize.

Figure 3: CKle interacts with TGF-B/BMP receptors in vitro. Radiolabled CKlIe was incubated with
GST purifed TGF-p type I and type II receptors and BMP type I receptor bound to glutathione
conjugated to sepharose beads, washed with binding buffer, run on a SDS-PAGE gel, dried and
exposed to film to visualize. :

N #
Figure 4: CKle binds to smads and TGF-B type I and type II receptors in vivo. Wild type HaCaT (-)
cells and HaCaT cells stably expressing CKlIe (C) were used to make whole cell lysates. The lysates
were then incubated with antibodies to TGF-B type I receptor (TRI), TGF-p type II receptor (TRII),
smads2/3 (S2/3), and smads1/5 (S1/5). The antibodies were then precipitated using a 50/50 mixture of
ProteinG and ProteinA conjugated to sepharose beads. The immunoprecipitated complexes were then
washed, run on a SDS-PAGE gel transferred to PVDF membrane and blotted for CKle.

Figure 5: CKle interaction with Smad2/3 in vivo is transienﬂy disrupted by TGF-f treatment. HaCaT

- cells stably expressing CKle were used to make whole cell lysates. The lysates were then incubated

with an antibody to smads2/3. The antibody was then precipitated using a 50/50 mixture of ProteinG
and ProteinA conjugated to sepharose beads. The immunoprecipitated complexes were then washed,
run on a SDS-PAGE gel transferred to PVDF membrane and blotted for CKIe.

Figure 6: CKle interaction with TGF-B type II receptor in vivo is independent of TGF-f treatment.
HaCaT cells stably expressing CKIe were used to make whole cell lysates. The lysates were then
incubated with an antibody to the TGF-B type II receptor (TBRII). The antibody was then precipitated
using a 50/50 mixture of ProteinG and ProteinA conjugated to sepharose beads. The
immunoprecipitated complexes were then washed, run on a SDS-PAGE gel transferred to PVDF
membrane and blotted for CKle.

Figure 7: CKle acts to fine tune SBE-Lux responsiveness to TGF-B. HepG2 cell were transiently
transfected with the reporter construct SBE-Lux, and increasing concentrations of either wild type
CKle or the kinase dead version (KD). Cells were treated with TGF-B overnight following transfection
and then harvested and assyed for luciferase activity. Transfection efficiency was corrected using f-
galactosidase as an internal control. :
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' Figure 8: CKle enhancement of 3TP-Lux responsiveness to TGF-B requires smad3 but not smad2.
HepG2 cell were transiently transfected with the reporter construct 3TP-Lux, and CKle alone, smad3
alone, smad2 alone, smad3 and CKle together, or smad2 and CKle together. Cells were treated with
TGE-P overnight following transfection and then harvested and assyed for luciferase activity.
Transfection efficiency was corrected using B-galactosidase as an internal control.

Figure 9: CKIe enhances smad3 activation of the SBE-Lux reporter. HepG2 cell were transiently
transfected with the reporter construct SBE-Lux, and CKIe alone, smad3 alone, or smad3 and CKle
together. Cells were treated with TGF-p overnight following transfection and then harvested and
assyed for luciferase activity. Transfection efficiency was corrected using B-galactosidase as an
internal control. ‘

Figure 10: CKle phosphorylates smads and TGF-B type II receptor in vitro. Smad proteins and the
cytoplasmic domains of the TGF-p type I and type II receptors were fused to GST, purified using
glutathione conjugated sepharose beads and eluted from the beads using free glutathione. These
purified proteins were then incubated with purified CKle in the presence of ATP-P* for 30 minutes.

The reactions were terminated and ruri on a SDS-PAGE gel, dried and exposed to film to visualize.
T
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CKlIs Phosphorylates Smads

Receptor In Vitro
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